

Manufacture using Advanced Powder Processes EPSRC Future Manufacturing Hub

Professor Iain Todd Director, MAPP EPSRC Future Manufacturing Hub

Industry and HVMC Partners

Our Vision

To enable Advanced Powder Processes to deliver on their promise of:

- Reducing material waste, energy use and costs
- Increasing UK industrial productivity
- Developing high value and novel product form to provide enhanced in-service performance

Advanced Powder Processes

Vision set with industry and HVMC

Challenges and Barriers

- Variability of input material and process outcomes
- Lack of explicit process understanding
- Absence of suitable real-time modelling
- No direct link from processing to in-service performance
- Next generation of engineers and technologists to make this happen

Current situation

Variable

Fixed

Variable

Limited or no monitoring

With MAPP

Designed for process

Monitored

Dynamic control via machine learning

Designed
Quality built in

RESEARCH PROGRAMME

PLATFORM RESEARCH

PLATORM RESEARCH 1

Powders by Design

PLATORM RESEARCH 2

Process by Design

GRAND CHALLENGE THEMES

GRAND CHALLENGE 1

Right First Time Manufacturing

GRAND CHALLENGE 2

Future Manufacturing Technology

Powder processes

delivering on potential
for UK industry

New home grown manufacturing technologies for UK industry

ALIGNED PROJECTS

User Defined Research Programmes

X1: In-Situ Process Monitoring

In situ AM Synchrotron Setup

Diamond Light Source

In situ AM on Beamline I12

Leung, Lee, Towrie et al, Funding EPSRC (RCaH&MAPP), FP7

X2: Characterisation

Advanced X-Ray Tomography

MakeAGIF.com

X3: Modelling and Control

Hybrid Modelling Approach used in MAPP

GC1: Right First Time Manufacturing

Large-volume High Speed Sintering machine

- 2 year, ~£1million, EPSRC-funded collaboration between University of Sheffield and the Advanced Manufacturing Research Centre (AMRC)
- Design and manufacture a High Speed Sintering capable of competing with Injection Moulding production rates
 - Overall build volume of 1630 x 855 x 760 mm
 - Production rates of <1 second per part (75 x 10 x 2mm part dimensions)

GC2: Future Manufacturing Technologies

Diode Area Melting

- Highly scalable approach, using laser modules with higher wall-plug efficiency compared to traditional fiber lasers
- Potential to instantaneously switch laser bar wavelength enabling the processing of different materials including polymers
- Laser spot overlap and focus can be adjusted to provide efficient optical pre-heat and component stress reduction

FastForge - SPS

FastForge - SPS

"Spark Plasma Sintering of Commercial and Development Titanium Alloy Powders"

N.S. Weston, F. Derguti, A. Tudball, M. Jackson Journal of Materials Science, in print (2015)

DOI: 10.1007/s10853-015-9029-6

Edit

CONTENT ▼ EVENTS

SECTORS ▼

TOPICS ▼

REPORTS

JOBS ▼

ADVERTISE

FASTForge to deliver cheaper aerospace titanium

Posted on 29 Nov 2016 by Jonny Williamson

L to R: Titanium powder obtained from rutile sand, Field Assist Sintered double cone preform, then pancake forging - image courtesy of FastForge.

A consortium comprising the world's leader in aircraft landing gear, a leading specialist metals producer and two of the UK's leading universities is working on FastForge, a project aimed at the production of aerospace-grade titanium at a third of the current price.

The partners working on the FASTForge project include Safran Landing Systems (formerly Messier-Bugatti-Dowty); Metalysis; the University of Strathclyde's Advanced Forming Research Centre (AFRC), and the University of Sheffield.

Most Read Last 7 Days All

- Airbus announces flying car development
- 2. Five innovative manufacturing technologies
- Engaging millennials to fuel innovation

RESEARCH PROGRAMME

PLATFORM RESEARCH

PLATORM RESEARCH 1

Powders by Design

PLATORM RESEARCH 2

Process by Design

GRAND CHALLENGE 1

Right First Time Manufacturing

GRAND CHALLENGE 2

Future Manufacturing Technology

Powder processes

delivering on potential
for UK industry

New home grown manufacturing technologies for UK industry

ALIGNED PROJECTS

User Defined Research Programmes

Today's Talks

- Powders and Additive Manufacturing for Aerospace applications'
 - Rob Sharman, Global Head of Additive Manufacturing, GKN Aerospace
- 'X-ray synchrotron imaging of additive manufacturing: from metrology to process control'
 - Peter Lee, University of Manchester & Research Complex at Harwell (X1, X2 P2)
- 'Manufacturing with Powders at Johnson Matthey'
 - Alison Wagland, Johnson Matthey

Today's Talks

- Powder dynamics in additive layer manufacturing processes'
 - Andrew Bayly, University of Leeds (P1)
- 'Metal AM from the perspective of the powder'
 - Phil Carroll, Chief Executive Officer, LPW Technology
- 'Prevention is better than cure'
 - Iain Todd, MAPP Director, University of Sheffield (P2, X1-3)

Why MAPP? Why now?

The combination of and advances in:

- machine learning with physically based modelling
- materials processing with advanced in-situ & exsitu characterisation

MAPP will create new, connected, intelligent cyber-physical manufacturing environments to achieve "right first time" product manufacture from powders.

